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ABSTRACT 

We report on the anisotropic optical properties of single-crystal tin monosulfide (SnS).  

The components , , and of the pseudo-dielectric-function tensor <ε> = <ε1> + 

i<ε2> spectra are taken from 0.73 to 6.45 eV by spectroscopic ellipsometry.  The measured <ε> 

spectra are in a good agreement with the results of the calculated dielectric response from 

hybrid density functional theory.  The <ε> spectra show the direct band-gap onset and a total of 

eight above-band-gap optical structures that are associated with the interband-transition critical 

points (CPs).  We obtain accurate CP energies by fitting analytic CP expressions to second-

energy-derivatives of the <ε> data.  Their probable electronic origins and implications for 

photovoltaic applications are discussed.  

                                                        

a) Author to whom correspondence should be addressed.  Electronic mail: sukgeun.choi@nrel.gov. 


E || a


E ||

b


E || c



 

 

2 

I. INTRODUCTION 

A natural p-type IV-VI binary compound tin monosulfide (SnS) is considered a 

promising absorber material for the next-generation thin-film photovoltaic (PV) technology.  

SnS has a suitable band-gap energy of ~1.1 eV,1 a large optical absorption coefficient of 104 -105 

cm-1 above the band gap,2,3 a high intrinsic free carrier concentration of ~1017 cm-3,4 and earth 

abundance of the constituent elements.  These properties suggest that PV devices with 

efficiencies as high as 24% are possible.5  

Despite material properties that are almost ideal for PV device applications, the power 

conversion efficiency (η) of SnS solar cells is so far limited to 4.4%,6 which is substantially 

smaller than the values achieved with alternate materials with similar opto-electronic 

properties.7  In attempts to increase the η of SnS solar cells, crystalline quality has been 

improved,8 optimum device architecture has been suggested,9 and detrimental effects of the 

possible secondary phases, such as SnS2 and Sn2S3, on the device performance have been 

examined.10 

Knowledge of optical properties of materials plays an important role in the development 

of high-efficiency solar cells.11-13  Complex refractive index N = n + ik and relevant properties, 

such as normal-incidence reflectivity R and absorption coefficient α, are used to characterize the 

device performance.14,15  The complex dielectric function ε = ε1 + iε2 provides great insight into the 

electronic structure of materials and can be used to compare experimental data to theoretical 

predictions,16-19 which in turn further enhances the performance and functionality of solar cells 

through bandgap- and defect-engineering.   

For SnS, however, clear discrepancies exist among the reported optical data of 

polycrystalline thin films.3,20-30  In addition, optical properties of reference single-crystal SnS have 

not been well established, yet.  The layer-structured SnS crystallizes in the orthorhombic 

structure (space group Pnma) with the lattice parameters of a = 4.33 Å, b = 3.98 Å, and c = 11.18 

Å,31 which is depicted in Fig. 1.  Therefore, SnS is expected to exhibit anisotropy in its optical 
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properties.  The anisotropic εa (ε at 

E || a ) and εb (ε at 


E ||

b ) spectra have been derived from a 

combined analysis of optical transmission and electron-energy-loss spectra from 0.5 to 22 eV.32  

The N for a single-crystal SnS, determined by unpolarized transmission measurements,33 also 

showed anisotropy in 

E || a  and 


E ||

b .  However, details of the optical structures shown in εa 

and εb spectra have not been discussed and the experimental spectrum for εc (ε at 

E || c ) is still 

not yet available in the literature.   

 

 

 

 

 

 

FIG. 1. (Color online) The distorted-rocksalt orthorhombic (Pnma) 
crystal structure of SnS. The Sn atoms are colored dark grey. 

 

 

 

 

 

 

 

Here, we apply spectroscopic ellipsometry (SE) to determine the room-temperature 

pseudodielectric function <εa>, <εb>, and <εc> spectra for single-crystal SnS.  The SE data show a 

good agreement with the εa, εb, and εc data calculated by hybrid density functional theory (DFT).  

In addition to the band-gap onset, a total of eight optical structures associated with the 

interband-transition critical points (CPs) are shown in the ε spectra, and the CP energy values 

are accurately obtained from the standard line-shape analysis34,35 of the numerically calculated 
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d2ε/dE2 data.  Electronic origins of CP energies and implications for PV device applications are 

discussed. 

 

II. EXPERIMENTS 

A single crystal SnS bulk was grown by the Bridgman-Stockbarger technique in a sealed 

fused silica glass ampoule.  As starting material, poly-crystal of an ab-initio synthesis in a 

stoichiometric composition was used.  For the bulk growth, a vertical resistance furnace 

consisting of three independent heating zones was used.  Before growth, the material was 

homogenized for 1 hr. in zone 1 at 930°C, which is above the melting point of 880ºC.  During the 

growth, the temperature gradient (ΔT) was 13°/cm and the growth rate was 0.5 mm/hr.  Details 

of the growth and structural characterization are given in Ref. 36. 

For SE measurements, a 2 mm-thick slab was cut from the bulk crystal with a large 

surface (approximately 100 mm2) normal to the c direction.  The large surface consisting of a and 

b axes and one side-face containing b and c axes were chemo-mechanically polished to reduce 

the surface overlayer artifacts.  Diamond lapping films with various grit sizes ranging from 30 

to 0.1 µm were used in an Allied High Tech Multi Purpose polishing system to progressively 

polish the surface, and the procedure was completed in conjunction with a 0.05-µm colloidal 

silica suspension applied on a polishing cloth. 

SE measurements were performed in the spectral range of 0.73 to 6.45 eV with the 

sample maintained at room temperature using a spectroscopic rotating compensator-type 

ellipsometer (J.A. Woollam Inc., M2000-DI model).  The angle of incidence was 70°.  The 

contribution from the ε tensor component along the axis normal to the measurement surface is 

known to be negligible to the SE data, which is reduced approximately by 1/ε.37  On the other 

hand, the SE measurement is most sensitive to the ε tensor component aligned to the 

intersecting line drawn by sample surface and plain of incidence.37,38  For the SnS crystal used in 

this study, the c-axis is normal to the measurement surface, while the a and b axes are 
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embedded within the surface.  Hence, the εa and εb spectra were acquired by rotating the sample 

about the surface normal, such that the intersecting line is parallel to the a- and b-axis, 

respectively, as depicted in Fig. 2(a).  Similarly, the εc spectrum was obtained by taking SE data 

on a side face of the SnS crystal with the c axis parallel to the intersecting line (Fig. 2(b)).   

 

FIG. 2. (Color online) Schematics depicting the SE 
measurements of (a) the large measurement surface 
containing the a and b axes, and (b) the polished side-
face containing the c axis.  A plane of incidence is 
indicated as the shaded area.  For the SE measurement 
of the side-face, a homemade spring-loaded sample 
holder was used. 
 

 

III. COMPUTATIONAL DETAILS 

 The electronic structure of SnS was calculated within Density Functional Theory (DFT) 

using a non-local hybrid exchange-correlation functional developed by Heyd, Scuseria, and 

Ernzerhof (HSE06).39  All calculations were performed using the Vienna Ab-initio Simulation 

Package (VASP) code,40 with the projector augmented wave (PAW) approach,41 a 400 eV plane 

wave cut-off, and reciprocal space sampling of 6 × 6 × 4 k-points.  The calculations included 240 

bands, 40 of which were occupied.  Electronic densities of states were calculated using the 

tetrahedron method with Blöchl corrections. 

   The structural parameters of SnS were fixed at the experimentally determined room-

temperature values of Ref. 42 in order to avoid errors associated with temperature and van der 

Waals interactions, which are not negligible in this pseudo-layered structure. 

The 𝜀 𝜔  was calculated within the electric dipole approximation from the real and 

imaginary hybrid Kohn-Sham eigenstates.43 The imaginary part of the frequency dependent 

dielectric response is computed by: 

 

𝜀! 𝜔 = 1 + !!!!!

!
lim!→!

!
!!

2𝜔!𝛿!,!,! 𝜀!" − 𝜀!" − 𝜔 × 𝑢!"!!!!|𝑢!" 𝑢!"!!"#|𝑢!"   (1) 
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where 𝑐 and 𝜐 refer to the conduction and valence band states respectively, and 𝑢!" is the cell 

periodic part of the orbitals at the k-point 𝑘.  𝜔 is the frequency of the incident photon and Ω is 

the volume of the unit cell.  The real part of the dielectric tensor is obtained using the standard 

Kramers-Kronig transformation: 

 

𝜀! 𝜔 = 1 + !
!
𝑃 !!

! (!!)!!
!!!!!!!!"

𝑑𝜔!!
!  (2) 

 

where 𝑃 denotes the principal value and 𝜂 is the complex shift.  

 

IV. RESULTS AND DISCUSSION 

The calculated electronic band structure of SnS is shown in Fig. 3.  With the HSE06 

treatment of electron exchange and correlation, SnS exhibits a fundamental electronic band gap 

of 1.11 eV that is spatially indirect, and a direct gap of 1.22 eV.  Although the SE data do not 

resolve it due to low transition intensities, the prediction of indirect gap at 1.11 eV is consistent 

with the results from other theoretical28,44 and experimental20,45 studies. 

The electronic band dispersion of SnS is typical of a layered material with a relatively 

flat band structure associated with the weakly interacting layers (longer Sn – S interatomic 

separation) and more dispersive pattern in the strongly bonded plane.  Quadratic fitting to the 

values of the energy dispersion around the direct band gap between Γ and Y points, shown in 

Fig. 3, yield effective masses of 0.07m0 for holes and 0.12m0 for electrons in the b direction.  

Experimentally observed effective masses for holes along the a and b crystallographic 

orientations are of the order of 0.2 m0 at 300 K determined from free carrier reflectivity.46 These 

values are somewhat larger than those we calculate, which is unsurprising due to the exclusion 

of temperature and the assumption of a perfect uniform crystal in the model electronic 

structure.  
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FIG. 3. (Color online) The calculated electronic 
energy band structure of SnS.  The major critical 
points are identified at various symmetric points 
of Brillouin zone. 

 

 

 

 

 

 

 

 

Calculated and SE-determined εa, εb, and εc spectra are presented in Figs. 4(a – f), showing 

a good agreement in the overall shape.  The calculated dielectric constants for the light 

polarization , , and  are listed in Table I.  The calculated optical dielectric 

constants ε∞ are in a good agreement with the SE-determined <ε1> values at the low energy limit: 

12.82 for , 15.97 for , and 13.25 for .  We note that the SE data shown in Figs. 

4(b), (d), and (f) are pseudodielectric function47 <ε> = <ε1> + i<ε2> spectra that are the direct 

inversion of experimental data, where no mathematical data modeling is involved.  Nonzero 

<ε2> value below ~1.3 eV can be thus a result of indirect band-gap nature of SnS crystal, a 

possible presence of thin surface overlayers such as native oxides and microscopic roughness, 


E || a


E ||

b


E || c


E || a


E ||

b


E || c

(



 

 

8 

or a combination of the preceding.  Owing to the uncertainty in the origin of below-band-gap 

absorption, we did not attempt a multilayer analysis in this study and report the <ε> spectra, 

taken after careful surface preparation procedures, that should be a close approximation to 

material’s intrinsic ε data. 

 

 

 

 

 
 
FIG. 4. (Color online) Calculated and SE-
determined ε spectra for the light polarization 

 (a,b),  (c,d), and  (e,f).  
Calculated data are presented in the left 
column (a,c, and e) and SE-determined <ε> 
spectra are shown in the right column (b,d, and 
f), respectively.  Real part (ε1) and imaginary 
part (ε2) are shown as light-thin and dark-thick 
lines, respectively.  

 
 
 
 

  

 

 

 

 

 

The SE-determined <ε> spectra for the light polarization  and  are in a good 

agreement with the data obtained from a combined analysis of optical transmission and 

electron-energy-loss spectra.32 The εa2 spectra (Figs. 4(a) and 4(b)) show one broad optical 

structure with several fine features spanning from ~1.3 to ~5.0 eV.  As an example, the major 
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above-band-gap CP structures are identified based on the results of calculated electronic energy 

band structure (Fig. 3) in Fig. 4(a). 

 

Table I. Calculated high frequency (ε∞) and static (ε0) dielectric constants of SnS (from HSE06-DFT). The 
ionic contribution to the response is calculated using the phonon dispersion from density functional 
perturbation theory.  

Property 
E || a  


E ||

b  


E || c  

εionic 21.36 37.64 22.72 

ε∞ 12.70 14.02 11.85 

ε0 = ε∞ + εionic 34.06 51.66 34.57 

 

 

In conjunction with the assigned probable vertical transitions (Fig. 3), we can elucidate 

the origin of the observed optical transitions.  The εb2 spectra (Figs. 4(c) and 4(d)) can be 

characterized by a large optical structure at ~2.5 eV followed by a weak broad structure 

centered at ~4 eV.  The electronic origin of the main peak at ~2.5 eV can be identified as a 

transition primarily from S p and Sn s orbitals in the valence band to Sn p orbitals in the 

conduction band occurring between the Γ and Y points in the BZ.  The high density of 

transitions within this narrow region of the BZ at similar energies accounts for the 

comparatively stronger absorption profile in the b direction.  For the εc2 spectra (Figs. 4(e) and 

4(f)), two distinct structures are seen at ~2.5 and ~4 eV whose electronic origins are understood 

to be the same as those observed in the εb2 spectra.  No experimental ε spectrum for the light 

polarization 
!
E || !c  of SnS is available in the literature to compare with our εc2 data, but the 

calculations reported by Makinistian and Albanesi48 show similar results.  

The direct band-gap energy is one of the key optical parameters of materials for the 

applications in PV devices.  Our SE-determined <εb2> spectrum (Fig. 4(d)) shows that the major 

optical absorption starts at ~1.3 eV, whereas the absorption onset in <εa2> and <εc2> spectra (Figs. 
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4(b) and (f)) seems to appear at slightly higher energy (~1.5 eV), which is consistent with some 

of the previously reported studies.  Makinistian et al.48 predicted maxima in the dielectric 

functions of 1.54 eV for the εa2 and εc2, and 1.21 eV for the εb2 (from semi-local DFT using a scissors 

operator).  A room-temperature electro-reflectance study49 also showed that the lowest direct 

gaps for the polarization of light 

E || a  and 


E ||

b  are 1.6 and 1.3 eV, respectively. Our 

calculations confirm that SnS has a fundamental direct band gap at 1.22 eV regardless of the 

light polarization, as discussed earlier, but variation in optical transition intensity introduces the 

anisotropic response.  This behavior will be important for photovoltaic applications in terms of 

deciding preferential material orientation and morphology, and in optical modeling for optimal 

device configurations.  

In order to verify the theoretical prediction of the band gap at 1.22 eV, we perform the 

standard lineshape analysis34,35 of the SE data, where the <ε> spectra are differentiated and 

smoothed numerically using algorithms of the Savitzky-Golay type,50 followed by least-squares 

fitting of standard analytic CP expressions.  The CP expressions are:51,52 

 

d 2ε
dE 2 =

n(n−1)Aeiφ (E −Eg + iΓ)
n−2, n ≠ 0

Aeiφ (E −Eg + iΓ)
−2, n = 0

$

%
&

'
&

 (3) 

 

where A is the amplitude, Eg is the threshold energy, Γ is the broadening parameter, and 𝜙 is 

the phase.  The exponent n has values of -1, -½, 0, and ½ for excitonic, one-, two- and three-

dimensional lineshapes, respectively.  Real and imaginary parts are fit simultaneously. 

Figures 5(a - c) show the d2<ε>/dE2 spectra (open symbols) together with the best-fit 

curves (lines) for the polarization of light , , and , respectively.  A combination 

of two- (n = 0) and three-dimensional (n = ½) lineshapes is used to fit the data from 1.0 to 5.0 eV, 

which results in the minimum discrepancy between the data and fits.  Energies of each CP 


E || a


E ||

b


E || c
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structure are indicated by arrows and labeled in a numeric order.  Differentiation substantially 

enhances the sensitivity to the weak optical structures, and multiple CP structures are now 

clearly seen.  Even though presence of the optical transition at ~1.3 eV is not obvious in the <εa2> 

and <εc2> spectra shown in Figs. 4(b) and 4(f), it appears in the d2<εa>/dE2 and d2<εc>/dE2 spectra 

as a small shoulder.  Inclusion of this transition in the lineshape analysis improved the quality 

of fits in the low-energy region of spectra.  Unlike the case for d2<εa>/dE2 and d2<εc>/dE2 spectra, 

the d2<εb>/dE2 spectrum shows a distinct optical structure at ~1.3 eV, which is indeed expected 

from Fig. 4(d).   

  

 

 

 

 

 

 

FIG. 5. (Color online) Red solid and blue dash-dotted lines: standard CP lineshapes best fit to second-
energy-derivatives d2<ε1>/dE2 (open circles) and d2<ε2>/dE2 (open squares) for the light polarization of (a) 

, (b) , and (c) , respectively.  The d2<ε1>/dE2 and d2<ε2>/dE2 data are calculated as 
described in the text.  For clarity, only 20% of the data points are shown.  Energies of each CP structure 
are indicated by arrows and labeled in a numeric order. 
 

The calculated and fit-determined CP energies are listed in Table II.  The energy values 

reported in previous studies32,48,49,53 are also included for comparison.  For the light polarization 

 and , our data are in a good agreement with the results from previous studies.  

However, our data reveal two additional CP structures for those two light polarizations, and 

also provide the CP energies in SnS for the light polarization  that have not yet been 

obtained experimentally.   
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Table II. Fit-determined CP energies in eV for α-SnS.  Calculated and previously reported CP energies 
are also included for comparison.  Suggested symmetric point in Brillouin zone for each CP structure is 
listed.  

CP Theory –  
Symmetric points 
(kx,ky,kz) 

   

E0 1.11ind. /1.22dir. 1.36a, 1.3d 1.31a, 1.21b, 1.3c 1.32a 

E1 1.87 – (0.0,0.0,0.0); Γ 1.59a, 1.54/1.6b, 1.6c 1.60a, 1.59d 1.61a, 1.54b 

E2 1.90 – (0.5,0.0,0.5); U 1.91a 1.98a, 1.91d 1.87a 

E3 1.97 – (0.0,0.0,0.5); Z 2.28a, 2.23b, 2.36d, 2.2e 2.34a, 2.35d 2.17a 

E4 2.45 – (0.0,0.5,0.0); Y 2.64a, 2.72b 2.76a, 2.72b, 2.80d 2.43a, 2.44b 

E5 3.08 – (0.5,0.5,0.0); S 2.98a, 2.82d 3.09a 2.84a 

E6 3.96 – (0.5,0.0,0.0); X 3.29a, 3.47b, 3.5e 3.42a, 3.41b, 3.56d, 3.3e 3.29a 

E7 5.23 – (0.5,0.5,0.5); R 3.71a, 3.93b, 3.7d 3.70a, 3.68d 3.64a, 3.99b 

E8 5.28 – (0.0,0.5,0.5); T 4.30a, 4.41d, 4.3e 4.06a, 4.17b, 4.5e 4.38a, 4.59b 

aThis work – Exp. 
bRef. 48 – Theory. 
cRef. 49 – Exp. 
dRef. 53 – Exp. 
eRef. 32 – Exp. 
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V. CONCLUSIONS 

An experiment and theory combined study has been performed on the anisotropic 

optical properties of α-phase SnS.  Spectroscopic ellipsometry (SE) has been used to determine 

the pseudo-dielectric-function tensor <ε> = <ε1> + i<ε2> spectra of α-SnS single crystal at the 

light polarizations of , , and .  The SE data clearly show a biaxial anisotropy in 

the optical properties of SnS, which is supported by the results of the calculated dielectric 

response from hybrid density functional theory (DFT).  The calculations also predict that SnS 

possesses an indirect band gap of 1.11 eV and a direct gap of 1.22 eV for all three 

crystallographic orientations.  Our SE data do not resolve the indirect band gap, but lineshape 

analysis of the second-energy-derivative of <ε> spectra reveals the direct band gap at ~1.3 eV.  

In addition to the direct band-gap onset, a total of eight above-band-gap critical-point (CP) 

structures were analyzed in the d2<ε>/dE2 spectra in the spectral range of 1.0 to 5.0 eV.  Probable 

electronic origin of each CP structure observed was identified based on the results from our 

hybrid DFT calculations.  Our SE data establish the optical function spectra of α-SnS in the three 

crystallographic orientations, which can be used as a reference for optical characterization of 

polycrystalline SnS thin films.  The results from our comparison study of experimental data 

analysis and DFT calculations improve our understanding of the electronic structure of SnS for 

better design of SnS-based photovoltaic devices. 
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